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A modified density matrix renormalization group �DMRG� algorithm is applied to the zigzag spin-1
2 chain

with frustrated antiferromagnetic exchange J1 and J2 between first and second neighbors. The modified algo-
rithm yields accurate results up to J2 /J1�4 for the magnetic gap � to the lowest triplet state, the amplitude B
of the bond order wave phase, the wavelength � of the spiral phase, and the spin correlation length �. The J2 /J1

dependences of �, B, �, and � provide multiple comparisons to field theories of the zigzag chain. The twist
angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field
theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponen-
tially long correlations near a quantum phase transition.
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I. INTRODUCTION

Extended one-dimensional �1D� models are excellent ap-
proximations for the electronic structure of some crystals,
either inorganic or organic. Quite separately, 1D models have
interesting theoretical and thermodynamic properties. In ad-
dition to exact results, approximate methods have been
widely applied to and tested on 1D models. Two major recent
developments are the density matrix renormalization group
�DMRG� and field theory. The two methods are complemen-
tary in principle, and both have been applied to the zigzag
spin-1

2 chain that is the subject of this paper. In practice,
however, field theory deals with small energy gaps or long
correlations lengths near quantum phase transitions that may
be beyond the accuracy of numerical methods, a point often
made for Kosterlitz-Thouless transitions. The two ap-
proaches to extended 1D systems are quite different. DMRG
is a versatile numerical technique for growing an extended
chain from a finite one. It provides a complete approximate
description of the ground state �g.s.� or other properties.
When multiple DMRG schemes are possible, the most accu-
rate one is readily identified. Field theory is an analytical
approach based on a continuum approximation or an effec-
tive Hamiltonian to a discrete 1D model. It targets critical
phenomena at quantum phase transitions. A 1D model may
support multiple field theories among which it may be diffi-
cult to choose.

In this paper, we present a modified DMRG algorithm to
the zigzag spin-1

2 chain with frustrated antiferromagnetic
�AF� exchange J1�0 and J2�0 between first and second
neighbors. The Hamiltonian of this familiar 1D spin system
is

H�x� = J�
n

��1 − x�S�n · S�n+1 + xS�n · S�n+2� . �1�

We consider the interval 0�x�1 and set the total exchange
J=1 as the unit of energy. The x=0 limit is a linear Heisen-
berg antiferromagnet �HAF� with many known exact
properties1 and many physical realizations. The x�1 limit

corresponds to two HAFs, one on each sublattice, and is the
zigzag chain sketched in Fig. 1. Small J1 for x�1 or x�1
describes an interchain exchange that is AF or ferromagnetic
�F�, respectively, and is frustrated because each spin is
equally coupled to two neighbors of the other sublattice. The
modified algorithm improves the accuracy for x�0.5
�J2 /J1�1�.

The spin chain H�x� has been extensively studied, espe-
cially in the x=0 limit1 that Bethe2 and Hulthen3 solved long
ago. Majumdar and Ghosh �MG� found4 a simple exact g.s.
at xMG=1 /3 �J2=J1 /2�. The g.s. is a doubly degenerate bond
order wave �BOW� with broken inversion symmetry at sites.
The fluid-dimer transition with increasing J2 /J1 marks the
opening of a magnetic gap ��x� between the singlet g.s. and
the lowest triplet state. The first field theoretic treatment5

placed the critical ratio of J2 /J1 at 1/3; subsequent analysis
returned6 J2 /J1=1 /6 and finally7 �1 /4. Okamoto and
Nomura8 obtained the accepted value, J2 /J1=0.2411 or xc
=0.1943 in our notation, using exact results up to N=24
sites, extrapolation and field theory.

Classical spins in H�x� lead to spiral phases for large
J2 /J1 when adjacent spins are nearly orthogonal. The g.s.
energy per site for classical spins with angle � between
neighbors is

Ecl��� = J1 cos � + J2 cos�2�� . �2�

Minimization with respect to � leads to cos �=−J1 /4J2 and
�=� /2+	 for large J2 /J1. The spiral phases of quantum
spins9–11 are another area of interest, as are the structure

FIG. 1. Zigzag spin-1
2 chain with AF exchange J1 and J2 be-

tween first and second neighbors, respectively. J1=0 gives two
Heisenberg chains of 2n spins with exchange J2.
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factor9 S�q� as a function of J2 /J1 and the crossover12 from a
singlet to a ferromagnetic g.s. at J1=−4J2. There are possible
physical realizations13 of H�x�, most with AF exchanges J1,
J2 and a few with F exchange J1.

White and Affleck �WA� studied14 the BOW phase with
J2 /J1 beyond the MG point by a combination of DMRG and
field theory. Numerical issues limited DMRG to J2 /J1=2.0
for � and to 2.5 for the order parameter. The modified algo-
rithm is accurate up to J2 /J1=4. WA concluded that the
BOW phase extends to x=1 �J1=0�. Itoi and Qin �IQ�
presented15 a more elaborate field theory for large J2 /J1. The
present work was motivated in part by the contrasting results
of IQ and WA. According to IQ, the spin correlation length
diverges as15

��J1,J2� � exp�c��J1�/J2�−2/3� , �3�

where c is a constant. The WA expression14 for � has expo-
nent −1 instead of −2 /3 and is limited to J1�0. The order
parameter of the BOW phase is

B�x� = �S�n · S�n+1	 − �S�n · S�n−1	 , �4�

where B�x� is the g.s. amplitude of the BOW for x�xc. WA
call it “dimerization,” a term that we reserve16 for structur-
ally dimerized systems such as polyacetylene or ion-radical
salts or spin chains. Broken inversion symmetry in a BOW
phase is electronic dimerization in a regular array. Both WA
and IQ support their ��x� with the same �limited� DMRG
results14 for B�x� and ��x�.

Since B�x� and ��x� are proportional to 1 /��x�, DMRG
for the BOW amplitude or the magnetic gap can be com-
pared to field theory as

ln B�x� � ln ��x� � − c�J1/J2�−2/3, �5�

with J2 /J1=x / �1−x�. The numerical problem is to evaluate
exponentially small quantities at large J2 /J1. The two com-
putations are independent since ��x� requires the triplet state
while B�x� does not. DMRG directly yields approximate spin
correlations functions in the g.s.,

C�p� = �S�n · S�n+p	 , �6�

and the wavelength ��x� of a spiral phase if present. As noted
by WA,14 B�x� and ��x� are well-defined quantities, whereas
��x� requires an unknown fitting function in addition to C�p�.
The order parameter of the spiral phase is the twist angle
	�x� below Eq. �2� that is related11,14 to the BOW phase as

��x� −
�

2
= 	�x� =

�

4�
. �7�

	�x�=2� /��x� has been approximated by a coupled-cluster
expansion9 and by twisted boundary conditions in finite
systems.11

A spiral phase of H�x� has been analyzed10 in the classical
limit of an infinite spin at each site in terms of a nonlinear 

model that involves a 3�3 orthogonal matrix. That field
theory does not produce a BOW, however, and is not pow-
erful enough to yield scaling results for ��x� or ��x�. On the
other hand, field theories14,15,17 based on bosonization do not
predict a parameter range in which a spiral phase should

appear. Indeed, there is no compelling field theoretic reason
that necessarily relates the spiral and BOW phase. They have
different order parameters and different symmetries, a dis-
crete symmetry for translation by one site in the BOW phase,
and a continuous rotational symmetry for the spiral phase.
The BOW extends from8 xc=0.1943 to14 x=1, while the
range of a spiral phase is18 from xMG=1 /3 to x=1. The rich-
ness of the zigzag chain at large J2 /J1 makes it ideal for a
critical discussion of DMRG accuracy and comparisons to
field theory.

Section II describes the modified DMRG algorithm in
which four rather than two spins are added per step. The
accuracy improves modestly at x=0 and dramatically for x
�2 /3 where the second-neighbor J2 dominates. Adding four
spins when J1 is small amounts to increasing two weakly
coupled chains by two spins each, just as adding two spins
does at x=0 in conventional DMRG. We present results in
Sec. III for B�x� and ��x� up to x=0.8 �J2 /J1=4� and for
	�x� and ��x� up to x=0.75 �J2 /J1=3�, the practical limit in
chains of N�1000 spins with open boundary conditions
�OBCs�. Our results agree with the IQ expression in Eq. �3�
with c=2.90�0.10 for all four quantities. We also compute
the structure factor S�q� and its maximum q� that yields an
independent estimate of the twist angle 	�x�. We comment in
Sec. IV on the status of comparisons between DMRG and
field theory for the zigzag chain at large J2 /J1.

II. MODIFIED DMRG ALGORITHM

DMRG is among the most accurate numerical techniques
for solving extended 1D quantum cell models.19–22 Conven-
tional DMRG algorithms start with four sites and grow an
extended chain by adding two sites in the middle, treating the
left and right half-blocks as system and environment by
turns.19,20 The accuracy of this method decreases for long-
range �beyond first-neighbor� interactions since we encoun-
ter bonds between old sites of the same system block. Long-
range interactions in conventional DMRG couple sites at
every step whose operators have undergone an unequal num-
ber of renormalizations. The spin chain H�x� in Eq. �1� has
second neighbor J2 between sites introduced on successive
steps. The decrease in accuracy becomes significant when J2
is large because site operators involved in J2 are renormal-
ized twice while the J1 operators are renormalized only once.
A remedy is to add sites on every step that encompass the
full range of interactions.

Accordingly, we modified the DMRG algorithm for H�x�
to add two new sites per half block instead of one, as shown
schematically in Fig. 2. The system starts with 4 spins and
grows to N=4n in N−1 steps. Large J2 /J1 leads to weakly
coupled chains of 2n sites in Fig. 1, each with a singlet g.s.
when J1=0. The Fock space dimensionality of each block
increases as 2�2s+1�m or as 4m for s=1 /2 sites, which is
comparable to fermionic systems. We find that keeping m
=150 eigenvectors of the density matrix is sufficient for good
accuracy. The truncation error in the sum of the eigenvalues
of the density matrix is less than 10−9 in the worst case, and
increasing m changes the energy only in fifth or sixth deci-
mal place, in units of J. For more accurate spin correlation
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functions C�p� and order parameter B�x�, we used finite
DMRG calculations on every fourth step.20 B�x� is calculated
using the middle bonds of the chain and is accurate up to 5–6
decimal place but is subject to finite-size effects of order 1 /N
discussed below.

We compare the modified algorithm with four sites added
per step to conventional DMRG for the g.s. energy and the
gap magnetic �. We use the infinite DMRG algorithm with
m=200 in each case. Since DMRG targets the lowest state in
each MS sector, the lowest permissible total spin state has the
best energy in an AF model. Conventional DMRG is most
accurate at x=0�J2=0� where there is only nearest-neighbor
exchange. Nevertheless, as shown by the inset in Fig. 3, the
new method improves the g.s. energy slightly and the triplet
energy considerably. Note that the inset energy scale is 100
times finer than that of the main figure. We attribute better
performance to �i� the absence of old-old bonds within the
same block in the new scheme, and �ii� increased number of
new-new bonds �3 at x=0� compared to new-old bonds �2 at
x=0� when four new sites are added at each step. The con-
ventional ratio is 1:2 at x=0. The accuracy of the new
method at x=0 is about 10−7 for the singlet and 10−5 for the
triplet. It runs smoothly for x�2 /3, in contrast to numerical
difficulties14 of conventional DMRG at x�1 /2. The esti-
mated accuracy for x�0.5 is 10−5 for the g.s. and 10−3 for
the triplet. We also studied chains with J2�0 and F ex-
change J1�0 in terms of J1, J2 rather than x�1 in Eq. �1�.

Figure 4 shows the size dependence of B�0.8� and ��0.8�
at J2 /J1=4.0. These are the smallest B and � that are accu-

rate with the present DMRG. We varied m to look for jumps
in B�x�, such as those in Fig. 6 of Ref. 14 at J2 /J1=2.5 but
found only the smooth behavior shown. In the four-site al-
gorithm, B�x� is linear in 1 /N for large N. Finite DMRG
procedure with m=200 and N between 100 and 200 sites
returns B�0.8�=0.0071, as shown in Fig. 4. The infinite al-
gorithm with variable m, and 200�N�430 leads to extrapo-
lated B�0.8�=0.0066. The inset of Fig. 4 shows the 1 /N de-
pendence of ��0.8� using finite DMRG with four spins
added per step. The extrapolated gap is 0.002. Similar ex-
trapolation at x=0 give ��0.001, close to the exact value
�=0.

III. J2 ÕJ1�1 REGIME OF H(x)

Larger J2 /J1 is accessible with the improved DMRG al-
gorithm. All results below are for m=200 and OBC for N
=800 sites, as discussed in Sec. II. The order parameter B�x�
in Eq. �4� and the magnetic gap ��x� from the g.s. to the
lowest triplet provide direct comparison to field theory of the
BOW phase. Both B�x� and ��x� go as 1 /��x�, where ��x� is
the correlation length in Eq. �3�. As seen in Fig. 5, the IQ
exponent of −2 /3 fits the DMRG results remarkably well up

FIG. 2. DMRG scheme with four new sites added per step.
Primed and unprimed indices are sites of the left and right blocks,
respectively. Open circles represent new sites and closed circles, old
sites. Solid lines represent J2, dashed lines J1.
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to J2 /J1=4 �x=0.8� with c=2.90. The B�x� fit covers almost
two orders of magnitude and extends to J2=J1.

The J2 /J1=1 point for � deviates upward from the line in
Fig. 5. IQ used DMRG �Ref. 14� for ��x� in the interval
0.6�J2 /J1�2 to support � in Eq. �3� with c=3.66. This is
not correct, and the one-loop approximation does not extend
down to J2 /J1�1. WA used DMRG for B�x� up to J2 /J1
=2.5 to support � with exponent −1 instead of −2 /3 in Eq.
�3�. Their expression fails at larger J2 /J1. DMRG with 0.6
�J2 /J1�2.5 is not appropriate for the BOW phase at large
J2 /J1. Although Fig. 5 covers more than an order of magni-
tude in � and almost two for B, there is no assurance that
J2 /J1=4 is large enough. On the other hand, if J2 /J1�4 is
not “large,” numerical comparison with field theory will in-
deed be difficult.

The accuracy of B�x� is limited by finite-size effects for
OBC and N=800 sites. We illustrate with an uncorrelated
example. A half-filled Hückel or tight-binding chain of N
sites has bond orders23

pm = 2�
k=1

N/2

ck,mck,m+1, �8�

with m=1,2 , . . . ,N−1. The coefficient ck,m at site m of the
filled orbital k is

ck,m =
 2

N + 1
sin

�km

N + 1
. �9�

The geometrical series for pm is summed for finite N. The
difference between pN/2 of the central bond and that of either
neighbor is −2�−1�N/2 /N for large N. The bond order pN/2 is
less than the band limit of 2 /� for N=4n and greater than
2 /� for N=4n+2, just as expected for partial single and
double bonds at the center of linear polyenes with evenly
spaced C atoms. Since OBC break inversion symmetry at
sites, this elementary example has implications for any OBC
simulation of BOW systems. In any case, the exponential
decrease in B with J2 /J1 is soon overwhelmed by 1 /N cor-
rections that limit DMRG with N�1000. Finite-size correc-
tions to � or other low-energy excitations also go as �1 /N
and place similar limits on the accuracy of exponentially
small gaps.

A DMRG calculation returns all g.s. spin correlations
functions C�p� in Eq. �6�. OBC implies that C�n , p� depends
on the site index n as well as the separation p. It is customary
to take sites n and n+ p in the central part of the chain. C�p�
between sites on one sublattice in Fig. 1 has even p, while
C�p� between sublattices has odd p. Figure 6 shows C�p� in
spiral phases at x=0.65 in the top panel and x=0.675 in the
bottom panel. The wavelength ��x� of the spiral phase ap-
pears directly provided that there are two nodes to specify
� /2. DMRG with N=800 sites yields � only up to x=0.75.
The scale factor p1/2 exp�p /�� follows WA, who14 considered
even p and chose � to make the amplitudes in Fig. 6 as equal
as possible. The same � holds for odd p. This procedure
minimally requires two maxima and hence is also limited to
x=0.75�J2 /J1=3�.

We obtained ��x� and ��x� from C�p� results with N
=800 sites. DMRG is unbiased in the sense that neither a
spiral nor a BOW phase is assumed. G.s. results for C�1� of
the two central bonds yield B�x� in Fig. 5 and for C�p� show
how ln ��x� and ln ��x� increase with J2 /J1 in Fig. 7. The IQ
exponent of −2 /3 in Eq. �3� fits reasonably well over a
smaller range of J2 /J1 with c=3.03 for �. The � exponent is
consistent with the more accurate c=2.90 in Fig. 5 for B�x�
and ��x� over a wider range. The scaling form of ��x� in the
BOW phase and ��x� in the spiral phase are almost identical.
According to Eq. �7�, the product ��x�B�x� or of ��x���x�
should be constant, independent of x for large J2 /J1. The
calculated points in Figs. 5 and 7 between J2 /J1=1.3 and 3.0
yield ��x�B�x��9�3 and ��x���x��5.6�2. Since neither
is monotonic in J2 /J1, our results are weakly consistent with
constant ��x� /��x�. Higher accuracy is needed to test Eq. �7�.

The spiral phase of H�x� has been modeled9–11 in terms of
the twist angle 	�0 for AF exchange that is defined below
Eq. �2� for classical spins. The inverse relation between ��x�
and ��x� in Eq. �7� has been proposed11,14 for large ��x� or
small 	 when the discrete nature of the spin chain is irrel-
evant. It follows that
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C�2p�  cos�2p�� = �− 1�pcos�2p	� ,

C�2p + 1�  cos��2p + 1��� = − �− 1�psin��2p + 1�	� .

�10�

Even and odd C�p� are not quite out of phase in Fig. 6, in
agreement with Eq. �10�. The nodes of C�2r� occur at 2r	
= �n+1 /2��, while those of C�2r+1� are at �2r+1�	=n�.
The angle 	�x� decreases with increasing J2 /J1 and has been
studied by other techniques.9,11 Independent evaluation of
	�x�=2� /��x� provides a consistency check for direct
DMRG results for ��x� in Fig. 6. Such consistency is differ-
ent from the common scaling of ��x� and ��x� discussed
above.

Aligia et al.11 obtained 	�x� using twisted boundary con-
ditions in Eq. �1� and exact results up to N=24. Bursill et al.9

presented several approximation schemes for 	�x�, one of
which is based on the peak q� of the structure factor S�q�.
The spin-1

2 structure factor for a system with periodic bound-
ary conditions is

S�q� =
1

N
�
np

C�p�exp�iqp� =
3

4
+ �

p=1
2C�p�cos�qp� ,

�11�

where C�p� are spin correlation functions in Eq. �6�. Inver-
sion symmetry is restored in a BOW phase by taking a linear
combination of the degenerate g.s. The MG point at x=1 /3
has short-range correlations, known exactly, leading to
SMG�q�=3�1−cos q� /4 and a broad maximum at q�=�. The
maximum value S�q�� is obtained using the derivative

�S�q�
�q

= �
p=1

2pC�p�sin�qp� . �12�

Equation �12� shows that q� is sensitive to long-range spin
correlation functions. We again use C�p� from the central
part of the chain. C�p� refers to n=N /2=400 in Eq. �6� and
the sum is from p=1 to N /2–10 or 10 sites from chain end.
The resulting S��q� are shown in Fig. 8. The inset magnifies

the S��q��=0 region for the indicated values of x. As ��x�
increases and correlations become long ranged, large p must
be retained in the sum and the inherent 1 /N limitations of
OBC are again encountered. Although q�=� /2+	�x�
→� /2 with increasing x as expected, the condition S��q��
=0 has limited value in the crucial region of small 	. The
point q�=� /2 occurs at J1=0 that separates the AF regime
with J1�0 and q��� /2 from the F regime with J1�0 and
q��� /2. We underestimate q� for x=0.70, which is clearly
unphysical, and hence overestimate � based on S�q�, but the
twist angle and wavelength are consistent for x�0.65.

Aligia et al.11 emphasized that twisted boundary condi-
tions extend 	�x� to much larger J2 /J1�30. They report rea-
sonable agreement with WA �Ref. 14� and with Bursill et al.9

up to J2 /J1=2.5, where our results are similar. But ��0.8�
�1300 estimated from J2 /J1=4 in their Fig. 4 is about seven
times smaller than the extrapolation of ��x� in Fig. 7. More-
over, their11 asymptotic regime starts at J2 /J1=15 where
their ��x� has the WA form with exponent −1 in Eq. �3�. The
stronger presumed decrease in 1 /��x� in the spiral phase as
x→1 would lose out to the weaker singularity of the BOW
phase. Twisted boundary conditions up to N�24 do not to
give reliable11 ��x�, however, and no B�x� results were pre-
sented.

IV. DISCUSSION

We obtained more accurate results for the frustrated spin
chain H�x� in Eq. �1� with J2 /J1�1 by modifying the
DMRG algorithm to add four sites per step instead of two.
The order parameter B�x� in Eq. �4� is limited by 1 /N cor-
rections in systems with OBC. The accuracy of the magnetic
gap ��x� to the lowest triplet is estimated by comparison to
exact results in the fluid phase with x�xc=0.1943. As seen
in Fig. 5, we find an exponential decrease in B�x� and ��x�
up to J2 /J1=4 that follows the IQ �Ref. 15� correlation func-
tion in Eq. �3� for almost two decades. DMRG automatically
yields the spin correlation functions C�p� in Eq. �6� and a
spiral phase with wavelength ��x� in Fig. 6. Following WA,14

the correlation length ��x� is extracted from amplitudes in the
spiral phase. Exponentially increasing ��x� and ��x� in Fig. 7
again follows the IQ expression in Eq. �3�, albeit over a
narrower range up to x=0.75�J2 /J1=3� set by numerical con-
siderations. The maximum q� of the structure factor in Fig. 8
is an independent estimate of twist angle 	�x�=2� /��x� of
the spiral phase in Eq. �2�. We find that q� has limited accu-
racy for our C�p� for x�0.65.

Detailed comparison with theory is made possible by mul-
tiple studies of the BOW �Refs. 14 and 15� and spiral9,11

phases of H�x� with J2 /J1�1. More generally, we wondered
whether DMRG is capable of confirming the small gaps or
long correlation lengths predicted by field theory. Our results
to J2 /J1=4 clearly favor the IQ expression15 for ��x� in Eq.
�3� while just as clearly ruling out their fit15 for ��x�. Greater
accuracy is needed for meaningful comparisons. The modi-
fied algorithm yields multiple and reasonably consistent
comparisons up to J2 /J1=4.

The modified algorithm runs smoothly for J2�0 and J1
�0. The IQ expression for ��x� in Eq. �3� does not depend
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FIG. 8. Derivative S��q� of the structure factor. The inset shows
S�q��=0 for x=0.625, 0.65, and 0.675. The twist angle 	 is q�

−� /2 in radians. The x=0.700 result is unphysical.
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on the sign of J1. We find finite gaps � on the F side that,
however, are less than our estimated numerical accuracy.
Still higher accuracy is needed for � on the F side. We can
definitely say, however, that the constant c�2.9 for ��x� on
the AF side is different from that on the F side. In view of
small �, Itoi and Qin discuss15 the spin-wave velocity of the
singlet or triplet and present conventional DMRG results for
N� vs 1 /N in Figs. 3 and 4 of Ref. 15. The appearance of a
nonsinglet g.s. at J1�−2J2 contradicts the exact result of
Dmitriev et al.,12 that the singlet to ferromagnetic phase
boundary of the zigzag chain is at J1=−4J2. Field theory on
the F side is numerically untested so far.

DMRG accounts naturally for coexisting BOW and spiral
phases with onsets at xc=0.1943 and xMG=1 /3, respectively,
but cannot say where they terminate. Bosonization field
theories14,15 have a BOW phase but not a spiral phase, while
field theory10 or other approaches9,11 to the spiral phase do
not yield a BOW. Equation �7� is an assumed11,14 relation
between the twist angle 	�x� of the spiral phase and the
correlation length ��x� of the BOW phase. The scaling of
��x� and ��x� in Fig. 7 is almost the same, and the products
��x�B�x� and ��x���x� are roughly constant but greater ac-
curacy is needed to confirm that ��x� and ��x� are indeed
proportional. It may be interesting in the future to study
whether similar scaling is special to spin-1

2 or holds also for
higher spin.

Field theory is a continuum approximation. Since solid-
state models are discrete, field theory becomes accurate
when ��x� exceeds 5–10 lattice constants. This is well docu-
mented for solitons in the SSH model24 and its continuum
version.25 As shown in Fig. 7, ��x��10 requires J2 /J1�1
and our DMRG extends to ��300. We do not consider the
discreteness of the lattice to be important.

It is a well-recognized numerical challenge, to obtain ex-
ponentially small energy gaps or exponentially long correla-
tion lengths near a quantum phase transition. Impressive
gains in numerical accuracy are required to be modestly
closer to the critical point. The modified DMRG algorithm
for H�x� extends accurate results to J2 /J1=4 and clearly fa-
vors the correlation function ��x� in Eq. �3� proposed by Itoi
and Qin.15 There are open questions such as whether J2 /J1
=4 is in the asymptotic limit or the relation between BOW
and spiral phases. Convincing comparison between field
theory and numerical methods are in fact demanding as we
have illustrated for the zigzag spin-1

2 chain.
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